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Workflow For Predictive Maintenance Algorithm Development
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you might have access to measured data from:

« Normal system operation Vibration

» The system operating in a faulty condition
« Lifetime record of system operation (run-to-failure data)

[ )

I EnginelD I Vibration Tachometer Age EnginelD Vibration Tachometer Age
01 time-series time-series 2,500 " time-series  time-series |
[ﬁ data' [ data ] 01 . | 2,500
. .
02 . me-senes 48,000 [ time-series | [ i ies
= [Ta ] 01 l ronan) - l 21.250
01 e Ragreinal 44,800
02 " time-series " time-series 14,000

data . | data

" time-series !
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Indicators

Data preprocessing can include:

Outlier and missing-value removal, offset removal, and detrending.

Noise reduction, such as filtering or smoothing.

Transformations between time and frequency domain.

More advanced signal processing such as short-time Fourier transforms and transformations to the order

domain
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Indicators

Examples of signal-based condition indicators include:

The mean value of a signal that changes as system performance changes
A quantity that measures chaotic behavior in a signal, the presence of which might be indicative of a fault condition

The peak magnitude in a signal spectrum, or the frequency at which the peak magnitude occurs, if changes in such
frequency-domain behavior are indicative of changing machine conditions



E ' St Igpta e 1z

ball bearings

dlscharge Current Motor motor pump w : Q N
1 mechanics
! + r2
- Y ’ ¥ 3
1 + r = *
9—» pipe
: - model .
. 1 9 >
relief hole 1 i
lit seal with ' moser inverse pump 8 | pump pipe Q
[ e By | N
clpearanoe gap . p pump model | | model ; "I model
|
. 2
1

AN 1 Healthy pump

suction mep - <= = < 42k - —— H o b 2 Fault 1: Wear at clearance gap

- 3 Fault 2: Small deposits at impeller outlet
4 Fault 3: Deposits at impeller inlet

rl = dp - dpest 5 Fault 4: Abrasive wear at impeller outlet
impeller r2 =Q - Qest_pipe 6 Fault 5: Broken blade
r3 =Q - Qest_pump_pipe 7 Fault 6: Cavitation

8 Fault 7: Speed sensor bias
9 Fault 8: Flowmeter bias
10 Fault 9: Pressure sensor bias
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Signal-Based Condition Indicators: The following signals are typically measured:
Time-Domain Condition Indicators »  Pressure difference between the inlet and outlet Ap
Frequency-Domain Condition Indicators *  Rotational speed o

«  Motor torque Mmot and pump torque Mp discharge
*  Fluid discharge (flow) rate at the pump outlet Q

Model-Based Condition Indicators: «  Driving motor current, voltage, temperature

Static Models «  Fluid temperature, sediments
Dynamic Models
State Estimators relief hole
2{;‘2;‘:\1‘8 W;g‘p sliding ring seal

Cavitation: Development of vapor bubbles inside the fluid if static pressure falls below vapor pressure. Bubbles collapse ball bearings
abruptly leading to damage at the blade wheels

Gas in fluid: A pressure drop leads to dissolved gas in the fluid. A separation of gas and liquid and lower head results.
Dry Run: Missing fluid leads to lack of cooling and overheating of bearing. Important for starting phase. suction sep - < = = «
Erosion: Mechanical damage to the walls because of hard particles or cavitation

Corrosion: Damage by aggressive fluids

Bearing wear: Mechanical damage through fatigue and metal friction, generation of pitting and tears
Plugging of relief bore holes: Leads to overloading/damage of axial bearings

Plugging of sliding ring seals: Leads to higher friction and smaller efficiency

Increase of split seals: Leads to loss of efficiency

Deposits: Deposits of organic material or through chemical reactions at the rotor entrance or outlet reduce efficiency and
increase temperature.

Oscillations: Rotor imbalance through damage or deposits at the rotor. Can cause bearing damage.

== == S S - =i

impeller
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Fault Detection Techniques

1. Parameter estimation
2. Residue generation

Pump Delivery Head Characteristics at 2900 RPM

30 1

251

— — —Healthy pump
Large clearance

T Small clearance

10 15 20 25 30 35 40
Discharge Rate Q (m3/h)
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H = hnnmz = hptoQ - huuQ2

Mp = Kow(} = leE + f{gmz

hnn
Healthy 5.1164e-06
Large Clearance 4,849e-06
Small Clearance 5.3677e-06

kO
Healthy 0.00033347
Large Clearance 0.00031571
Small Clearance 0.00034604

hnv hvv
8.6148e-05 0.010421
8.362e-05 0.011082
8.4764e-05 0.0094656

k1l k2
0.016535 2.8212e-07
0.016471 3.0285e-07
0.015886 2 .6669e-07
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Fault Mode Histograms: Head Parameters

20

Multi-Class Classification of Fault Modes Using Tree Bagging

Healthy operation

Wear at clearance gap

Small deposits at impeller outlet
Deposits at impeller inlet
Abrasive wear at impeller outlet
Broken blade

Cavitation

NoobkownPE
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A summary of the fault diagnosis workflow follows:

1. Run the test pump at its nominal speed. Turn the discharge valve to various settings to
control the flow rate. For each valve position, note down the pump speed, flow rate,
pressure differentials and torque

30

N
9]

2. Estimate parameters for the pump head and pump torque characteristic (steady state)
equations.

N
=

3. If the uncertainty/noise is low and the parameter estimates are reliable, the estimated
parameters can be directly compared to their nominal values. Their relative magnitudes
would indicate the nature of the fault.

4. In a general noisy situation, use the anomaly detection techniques to first check if there is
a fault present in the system at all. This can be done very quickly by comparing the
estimated parameter values against the mean and covariance values obtained from a
historical database of healthy pumps. STt

Misclassification (%)
o

-
o
T

5. If afault is indicated, use the fault classification techniques (such as likelihood ratio tests
or output of a classifier) to isolate the most probable cause(s). The choice of 0
classification technique would depend upon sensor data available, their reliability, the
severity of the fault and availability of historical information regarding the fault modes.
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Decision Models for Fault Detection and Diagnosis
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Some examples of decision models for condition monitoring include:

A threshold value or set of bounds on a condition-indicator value that indicates a

fault when the indicator exceeds it

A probability distribution that describes the likelihood that any particular value of
the condition indicator is indicative of any particular type of fault

A classifier that compares the current value of the condition indicator to values
associated with fault states, and returns the likelihood that one or another fault

state is present

Feature Selection: PCA
Statistical Distribution Fitting
Machine Learning

Regression with Dynamic Models
Control Charts

Changepoint Detection
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Rolling Element Bearing Fault Diagnosis
4 D v Localized faults in a rolling element bearing may occur in the outer
race, the inner race, the cage, or a rolling element.
—Pd -
High frequency resonances between the bearing and the response
A transducer are excited when the rolling elements strike a local fault on
Output the outer or inner race, or a fault on a rolling element strikes the outer
shaft or inner race.
- Inner race affected by crack
— (Exaggerated)

Each data set contains an acceleration signal "gs", sampling rate "sr",

SaiNeannlches cec DR {MEgOIEe) shaft speed "rate", load weight "load", and four critical frequencies
representing different fault locations: ballpass frequency outer race
(BPFO), ballpass frequency inner race (BPFI), fundamental train
frequency (FTF), and ball spin frequency (BSF).
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The histogram shows a clear separation among the three different bearing conditions.
The log ratio between the BPFI and BPFO amplitudes is a valid feature to classify
bearing faults. To simplify th example, a very simple classifier is derived:

If log (BPFI Amplitude/BPFO Amplitude) < — 1.5, the bearing has an outer race fault.
If —1.5 < (log BPFI Amplitude/BPFO Amplitude) < 0.5, the bearing is normal.
If (log BPFI Amplitude/BPFO Amplitude) > 0.5, the bearing has an inner race fault.
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Predict Remaining Useful Life
Develop Detection or Prediction Model
Identify
Condition E> E:::ﬂ?;g |:> Train Model
Indicators
+ 1

* Monotonicity characterizes the trend of a feature as the system evolves toward failure. As a system gets progressively closer to failure, a suitable
condition indicator has a monotonic positive or negative trend.

» Prognosability is a measure of the variability of a feature at failure relative to the range between its initial and final values. A more prognosable
feature has less variation at failure relative to the range between its initial and final values.

« Trendability provides a measure of similarity between the trajectories of a feature measured in multiple run-to-failure experiments. Trendability of a
candidate condition indicator is defined as the smallest absolute correlation between measurements.
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Models for Predicting Remaining Useful Life

A model that fits the time evolution of a condition indicator and predicts how long it will be before the condition indicator crosses
some threshold value indicative of a fault condition.

A model that compares the time evolution of a condition indicator to measured or simulated time series from systems that ran to
failure. Such a model can compute the most likely time-to-failure of the current system.

* Run-to-failure histories of machines similar to the one you want to diagnose
« Aknown threshold value of some condition indicator that indicates failure
« Data about how much time or how much usage it took for similar machines to reach failure (lifetime)

[ System Data J

Run-to-failure Known failure L_ife time. data
history threshold with or without
covariates

Similarity Degradation Survival
Models Models Models
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Similarity models:

* You have run-to-failure data from similar systems (components). Run-to-failure data is data that starts during healthy operation and ends when the
machine is in a state close to failure or maintenance.

» The run-to-failure data shows similar degradation behaviors. That is, the data changes in some characteristic way as the system degrades

Degradation Models:

» Linear degradation model: Describes the degradation behavior as a linear stochastic process with an offset term. Linear degradation models are
useful when your system does not experience cumulative degradation.

» Exponential degradation model: Describes the degradation behavior as an exponential stochastic process with an offset term. Exponential
degradation models are useful when the test component experiences cumulative degradation.

Survival Models:
» Only data about the life span of similar components. Given the historical information on failure times of a fleet of similar components, this model
estimates the probability distribution of the failure times. The distribution is used to estimate the RUL of the test component.

» Both life spans and some other variable data (covariates) that correlates with the RUL. Covariates, also called environmental variables or explanatory
variables, comprise information such as the component provider, regimes in which the component was used, or manufacturing batch.
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Deploy Predictive Maintenance Algorithms

Verification & Validation

Specifications &
Requirements

Production

€

Software &
System
Integration

Design &
Prototype

Implement &
Deploy
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Deploy Predictive Maintenance Algorithms

« Memory and computational power

« Operating mode. For instance, the algorithm might be a batch process that runs at some fixed time interval such as once a day.
Or, it might be a streaming process that runs every time new data is available.

» Maintenance or update of the algorithm. For example, the deployed algorithm might be fixed, changing only changes through
occasional updates. Or, you might develop an algorithm that adapts and automatically updates as new data is available.

* Where the algorithm runs, such as whether the algorithm must run in a cloud, or be offered as a web service.
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