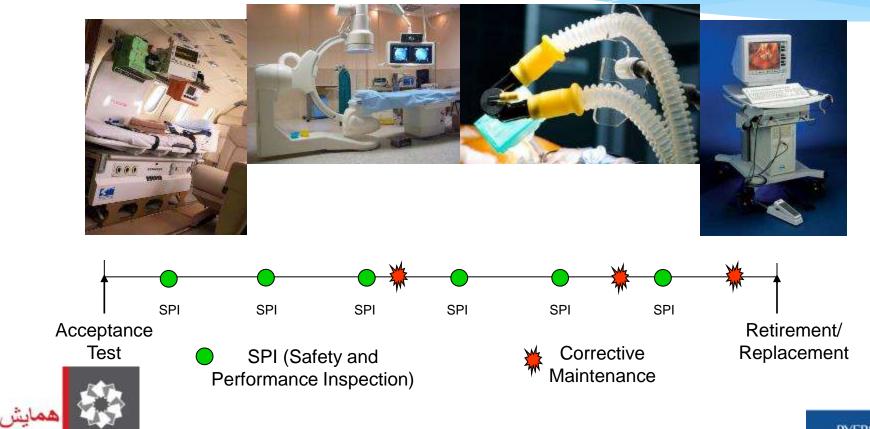

Reliability and Maintenance of Medical Devices

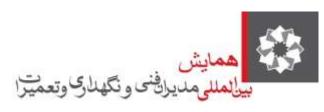
Dr. Sharareh Taghipour, Assistant Professor, PhD, LEL


Reliability, Risk, and Maintenance Research Laboratory (RRMR Lab) Ryerson University


Presentation Outline

- Background
- Key problems
- Research contributions
- Prioritization of medical devices
- Failure data, statistical analysis and trend test
- Inspection optimization models
- Conclusion
- Future work

Background


* Medical Equipment Management Program

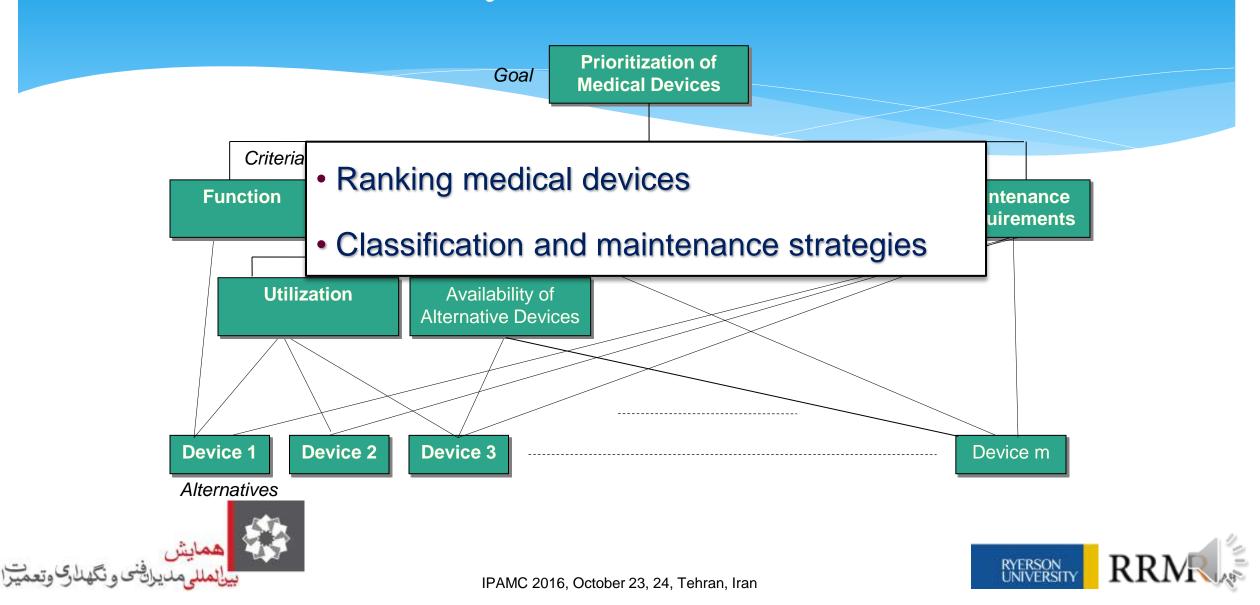
- Which devices should be included in the MEMP?
- What maintenance strategy should be established for each class of devices?
- Which optimization models should be developed?

Research Contributions

Prioritization of Medical Devices

1. Journal of the Operational Research Society, 2011, 62 (9): 1666-1687.

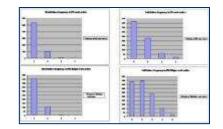
Reliability and Trend Analysis of Medical Devices' Failure Data


- 2. Quality and Reliability Engineering International, 2011, 27(1): 71-84.
- 3. Reliability Engineering and System Safety, 2011, V.96 (10): 1340-1348.
- 4. Computers and Industrial Engineering, 2013, 64(1): 143-152.

Inspection and Maintenance Optimization Models

- 5. Reliability Engineering and System Safety, 2010, V.95(9): 944-952.
- 6. IEEE Transactions on Reliability, 2011, V.60(1): 275-285.
- 7. IIE Transactions, 2012, 44 (11): 932–948.
- 8. European Journal of Operational Research, 2012, V. 220 (3): 649-660.

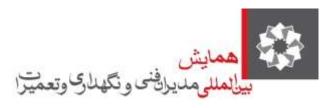
Criticality Assessment Model

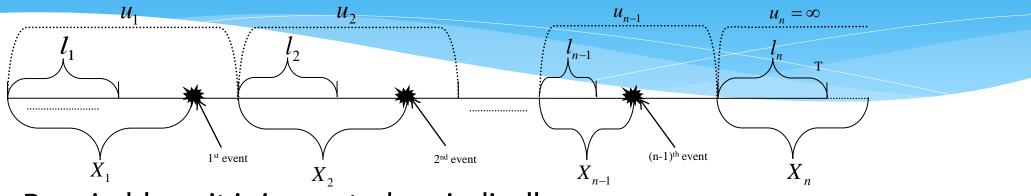


Failure Types: Soft & Hard

General Infusion Pump

Components with hard failure	Components with soft failure		
AC Plug/Receptacles	Audible Signals		
Alarms	Battery/Charger Chassis/Housing		
Controls/Switches			
Indicators/Displays			
Mount	Fittings/Connectors		
Occlusion Alarm	Labeling		


- The system stops
- Repaired immediately
- The system can still function
- The performance is reduced
- Rectified at next inspection


Sample Results at System Level

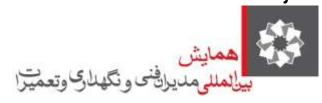
n	No of observations	No of non- censored	No of right censors	No of left censors	No of interval censors	β	η	$\mu = \eta \Gamma(\frac{1}{\beta} + 1)$
n = 1	674	237	28	348	61	1.5680	396.9852	356.6204
n = 2	646	215	111	283	37	1.5175	318.9879	287.5696
n = 3	536	177	100	222	37	1.3499	306.6525	281.2007
n = 4	433	143	116	162	12	1.5622	311.9259	280.3152
n = 5	318	101	115	96	6	1.3042	301.7416	278.5013
n=6	203	48	114	40	1	1.1024	381.6272	367.9733
n = 7,8	129	34	58	35	2	0.9718	247.9506	251.0791
$n \ge 9$	89	41	30	15	3	0.8472	156.9852	171.1464

Observed & Unobserved Data

- Repairable unit is inspected periodically
- Failures follow a NHPP with a power law intensity function $\lambda(x) = \beta e^{\alpha} x^{\beta-1}$
- Failures are only rectified at inspections (censored failures)

```
n event s observed over time T. Event s times X_1, ..., X_r, X_n where
```

 X_i depends on $X_1 + \ldots + X_{i-1}$.



Trend Analysis Using Likelihood Ratio Test

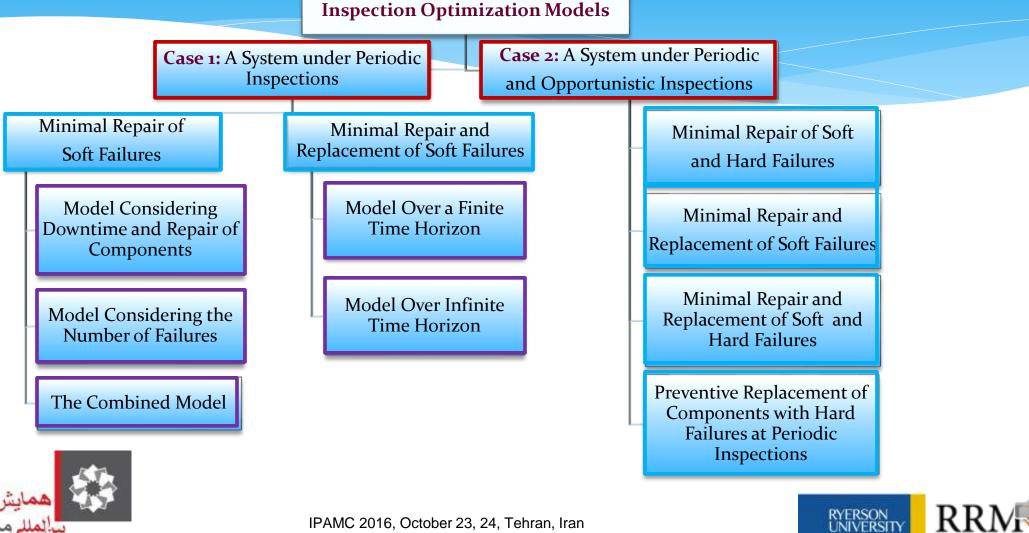
- We want to test whether the intensity of failures increases, decreases or is constant:
 - H_0 : Homogenous Poisson process $\beta = 1$
 - H_1 : Non-homogenous Poisson process $\beta \neq 1$
 - L_0 = Maximum likelihoods of the data when β =1
 - L_1 = Maximum likelihoods of the data when $\beta \neq 1$

Statistic
$$\chi_1^2 = -2\ln(L_0/L_1)$$

Reject H_0 if χ_1^2 is greater than an appropriate critical value $\chi_{1,\alpha}^2$

Results of the Trend Analysis

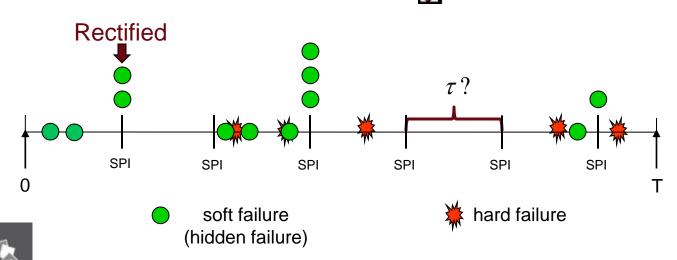
Audible signal (125 records, 80 units)


- * Housing/chassis (164 records, 38 units)
- * Battery (897 records, 674 units)
- * Simulated date (690 records, 100 units)

Component Name	Battery	Housing/chassis
Maximum Likelihood Using the EM Gradient $(\beta \neq 1)$	$\hat{\alpha} = -2.912, \hat{\beta} = 1.784$ ln(L ₁) = -698.305	$\hat{\alpha} = -0.142, \hat{\beta} = 0.917$ ln(L ₁) = -153.425
Maximum Likelihood $(\beta = 1)$	$\alpha = -1.926$ ln(L_0) = -751.228	$\alpha = -0.280$ ln(L ₀) = -153.536
χ_1^2	105.846	0.222
Conclusion	trend	no trend

Structure of the Optimization Models

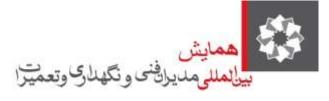
افنى و نگهلارى وتعميرا


Non-Opportunistic Maintenance

V

Assumptions:

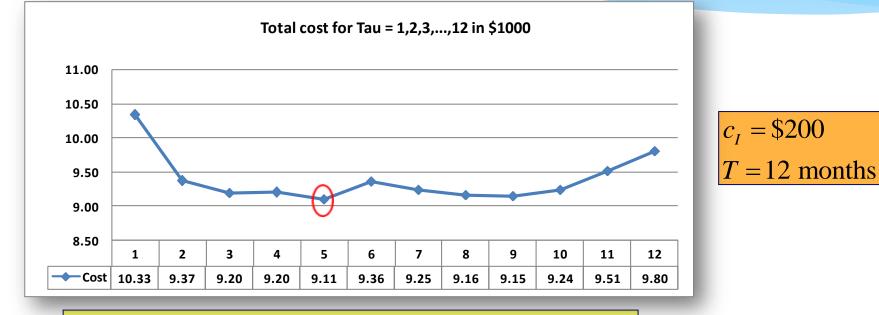
- Finite time horizon (T)
- Periodic inspections
- Non-opportunistic maintenance
- Minimal repair and replacement

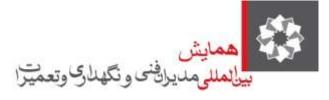

Example:

A Five Components System

Component	β_j	η_j			Replacement	a_i	b_i
	5	(months)	cost	cost/month	cost	J	U j
1	1.3	3.5	\$70	\$100	\$700	0.9	0.2317
2	1.1	4.6	\$45	\$250	\$450	0.9	0.1763
3	2.1	6	\$100	\$220	\$1000	0.9	0.1352
4	1.8	10	\$75	\$170	\$750	0.9	0.0811
5	1.7	3.6	\$150	\$260	\$1500	0.9	0.2253

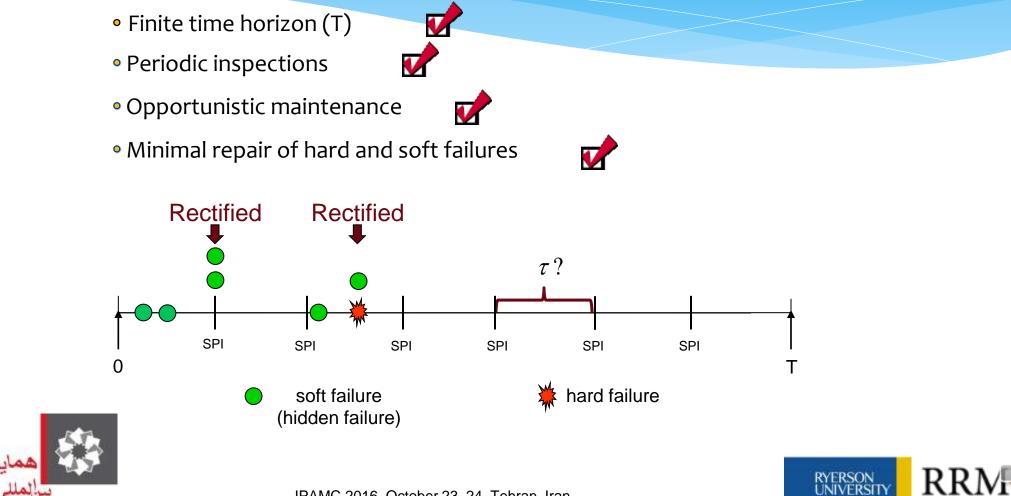
Parameters of the power law intensity functions, probability of minimal repairs ($r(x) = ae^{-bx}$) and costs for different components


Parameters are obtained from a medical device (infusion pump) case study



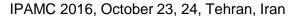
Example: Cost Function

$$E[C_{S}^{T}] = nc_{I} + \sum_{j=1}^{m} \sum_{k=1}^{n} (C_{j}^{M} M_{k}^{j}(t) + R_{k}^{j}(t) C_{j}^{R}) + \sum_{j=1}^{m} \sum_{k=1}^{n-1} C_{j}^{D} (\tau - e_{k}^{j}(t)) + \sum_{j=1}^{m} C_{j}^{D} (\sigma - e_{n}^{j}(t))$$


It is optimal to inspect at 5, 10, and 12 months!

Opportunistic Maintenance

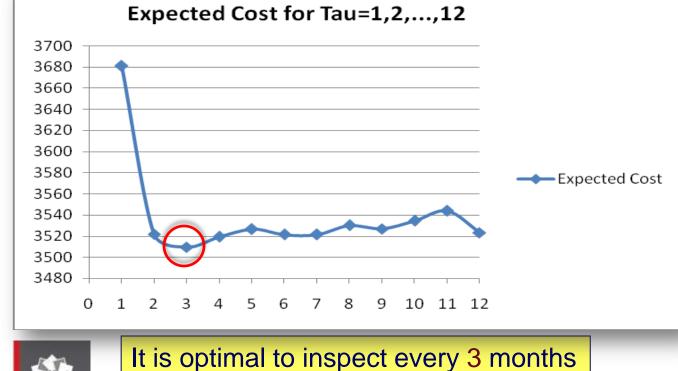
Assumptions:

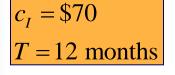


Example: A System with 5 Soft and 3 Hard Components

	Component	$oldsymbol{eta}_{j}$	η_j (months)	Minimal repair cost	Downtime penalty cost/month
	1	1.3	3.5	\$70	\$150
Ires	2	1.1	4.6	\$45	\$250
Soft Failures	3	2.1	6	\$100	\$300
Soft	4	1.8	10	\$75	\$100
	5	1.7	3.6	\$150	\$150
es	1	1.5	11		
Hard Failures	2	1.2	7.2		
F.	3	1.7	2.8		

Parameters are obtained from a medical device

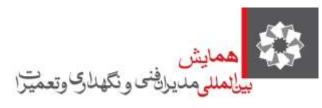

(infusion pump) case study



Example: Cost Curve

$$E[C_{S}^{T}] = nc_{I} + \sum_{j=m_{1}+1}^{m_{1}+m_{2}} [c_{j}^{M}M_{n}^{j}(\sigma,t,s) + c_{j}^{D}(T - e_{n}^{j}(\sigma,t,s))]$$

Conclusions


Prioritization of medical devices

Model is comprehensive and incorporates all important criteria, but is expert intensive

 Data analysis and trend test
The common belief that electronic devices fail randomly is not always correct

Inspection interval

Soft and hard failures, and periodic and opportunistic inspections should be considered in the model

Future Research

Prioritization of medical devices

Multi-criteria methodology to select appropriate maintenance strategy

• Trend test

Using other iterative algorithms to compare the results

Inspection interval

Considering non-periodic and condition-based inspections

Thanks You

Email: sharareh@ryerson.ca

