A Value-based Maintenance Strategy for Systems under Imperfect Maintenance

Seyed Ahmad Niknam Assistant Professor Industrial Engineering Western New England University

Outline

- * Introduction
- * Research objective
- * Basic Assumptions
- * Degradation model
- * Maintenance model
- * Optimization model
- * Numerical example
- * Conclusions & future works

"Price is what you pay, value is what you get."

Warren Buffett

* Operations and Maintenance Costs

- * 60–70% of the overall generating cost in nuclear power plants [1]
- * 14%-30% of the generating cost in offshore wind farms [2]

[1] Coble, J., et al., A review of prognostics and health management applications in nuclear power plants. International Journal of Prognostics and Health Management, 2015. 6: p. 016-None.
[2] Martin, R., et al., Sensitivity analysis of offshore wind farm operation and maintenance cost and availability.

- * Focus: minimizing maintenance cost
 - * Results: cost-centric models
 - * Missing: contribution of maintenance to system value
 - * Example: improved system reliability

* Maintenance as a value-generating action

- * Scarce literature
- * **Promising results:** more sophisticated maintenance strategies
- * **Considerations:** quantifying maintenance, monitoring frequency, maintenance threshold; interacting components, ...

افنى و نگهدارى وتعميرا

Research Objective

* Objective:

- * A value-based maintenance strategy
 - * System is subject to degradation.
 - * System receives periodic monitoring (constant monitoring interval).
 - * System receive imperfect maintenance.
- * Maximize the net value
- * Variables:
 - * Length of the monitoring interval (ζ)
 - * Degradation level after imperfect preventive repairs (x_r)

The Major Issue

- * Unlike maintenance cost, it is difficult to formulate maintenance from the value perspective.
- * In this research, the revenue generated during the preventive cycles is the maintenance value.

Net Value = Revenue – Costs

Basic Assumptions

* X_p: threshold between normal state and potential failure

* X_f: threshold between potential and functional failure

Basic Assumptions

- * Duration of imperfect repair is negligible.
- * The only cause of system failure is degradation.
- * Degradations before and after repair are independent.
- * Degradation is monotonic.
- * Cost of imperfect maintenance depend on the maintenance degree.
- * Degradation threshold are pre-determined.
- * Functional failures are detected only by monitoring.

[3] Wu, F., et.al, **A cost effective degradation-based maintenance strategy under imperfect repair**. Reliability Engineering & System Safety, 2015. 144: p. 234-243

Methodology

فنى ونگهارى وتعميرا

Degradation Model

* Cumulative degradation:

$$D(t_i) = \Phi + \theta e^{\beta t_i + \varepsilon(t_i)} \ i = 1, 2, ...; \ 0 \le t_1 \le t_2 \le ..$$

* Log form:

$$L(t_i) = \ln(D(t_i) - \Phi) = \ln\theta + \beta t_i + \varepsilon(t_i)$$

- * Common characteristics: 9 and β (mutually independent)
- * $ln\theta$ has a normal distribution
- * Unique characteristics: $\varepsilon(t_i)$. The error term follows a Markov process
- * Let $L(t_0) = 0$ and $\theta' = ln\theta$:

$$L(t_i) = \theta' + \beta t_i + \varepsilon(t_i)$$

Maintenance Model Expected length of life cycle

- * Three cycles: the first cycle, repair cycles, failure cycle.
- * The first cycle and the failure cycle are not affected by maintenance activities (no value for maintenance).
- * From value perspective

 $LC(x_r, \zeta) = E[Preventive cycles] * (E[Np] - 1)$

- * Two cases, two probabilities for
 - * Case 1: at least one repair before the failure

$$P_P(i, x, \zeta) = P\{D_1 < x_p, \dots, D_{i-1} < x_p, x_p < D_i < x_f | D_0 = x\}$$

* Case 2: failure occurs before the first repair

$$P_F(i, x, \zeta) = P\{D_1 < x_p, \dots, D_{i-1} < x_p, x_f < D_i \mid D_0 = x\}$$

Maintenance Model Expected length of life cycle

 $P_f(x,\zeta) + P_P(x,\zeta) = 1$

$$E[Length Repair Cycles] = \sum_{i=1}^{\infty} (i\zeta) P_P(i, x_r, \zeta)$$

$$(Np) \sim Geom\left(P_f(x_r,\zeta)\right) \rightarrow E[Np-1] = \frac{1}{P_f(x_r,\zeta)} - 1 = \frac{P_P(0;\zeta)}{P_f(x_r;\zeta)}$$

$$LC(x_r,\zeta) = \left(\frac{P_P(0;\zeta)}{P_f(x_r;\zeta)}\right) \sum_{i=1}^{\infty} (i\zeta) P_P(i,x_r,\zeta)$$

Maintenance Model Expected life cycle maintenance cost

$$TC(\zeta, x_r) = C_f + E[N_p + 1]C_m + E[N_p]E[C_p]$$

- * C_f : cost of failure
- * *C_m*: cost of monitoring
- * C_p : cost of repair = $M \cdot E[R] + C_s$
 - * C_s : fixed cost of repair
 - * M: a known proportional constant
 - * E[R]: expected degradation reduction after repair

$$E[R] = ln\theta + \beta \sum_{i=1}^{\infty} (i\zeta) P_P(i, x_r, \zeta) - x_r$$

 $Max Z = LC(x_r, \zeta) * RV - TC(\zeta, x_r)$ s.t. $0 < E[R] < X_p$

* The constraint implies that the degradation level after a repair cannot be greater than X_p .

- * $\mu_{\theta} = 1$ and $\sigma_{\theta}^{2} = 0.01$.
- * $\beta = 0.125$
- * Error: univariate autoregressive—moving-average (ARMA) process for error terms with lag = k (k = 1,2,...).
 - * Centered at zero.
 - * Two settings are examined: lag = 2, and lag = 3.
- * 1000 sets of degradation data generated.
- * The discrete values of the length of monitoring interval and the degradation reduction after preventive repair:

 $\zeta = [25,50,75,100,125,150], x_r = [2, 4, 6, 8, 10]$

LAG = 2										
Number of		Xr								
monit	toring	2	2 4 6 8							
Zeta	25	17	1175	1266	1312	1350				
	50	7	8	23	227	288				
	75	4	4	5	7	17				
	100	3	3	3	3	4				
	125	2	3	3	3	3				
LAG = 3										
Number of		Xr								
moni	toring	ng 2 4 6 8				10				
Zeta	25	18	997	997	997	997				
	50	7	9	34	498	498				
	75	4	5	5	9	46				
	100	3	3	3	4	5				
	125	3	3	4	4	4				

LAG = 2						LAG = 2									
C	a.a.t	Xr					Not Volue		Xr						
	DSt	2	4	6	8	10		net value		2	4	6	8	10	
	25	84.5	5295.5	5705	5912	6083		Zeta		25	-4.5	574.5	620	643	662
Zeta	50	63.5	72	199.5	1933.5	2452			50	-3.5	-2	20.5	326.5	418	
	75	50	50	62.5	87.5	212.5			75	-5	-5	-2.5	2.5	27.5	
	100	45.5	45.5	45.5	45.5	62			100	-5.5	-5.5	-5.5	-5.5	-2	
	125	33	53.5	53.5	53.5	53.5			125	-8	-3.5	-3.5	-3.5	-3.5	
LAG = 3						LAG = 3									
Xr				Not Volue Xr											
	DSt	2	4	6	8	10		Net value		2	4	6	8	10	
Zeta	25	75.5	4236.3	4236.3	4236.3	4236.3		Zeta	25	9.5	743.75	743.75	743.75	743.75	
	50	52.75	69.25	275.5	4103.5	4103.5			50	7.25	10.75	54.5	866.5	866.5	
	75	40	52.25	52.25	101.25	554.5			75	5	7.75	7.75	18.75	120.5	
	100	35.75	35.75	35.75	52	68.25		100	4.25	4.25	4.25	8	11.75		
	125	43.75	43.75	64	64	64		125	6.25	6.25	11	11	11		

Expected costs and net values for lag of 2 and 3

Net Value (high		Xr							
degradat	ion rate)	2 4		6	8	10			
Zeta	25	-7.75	-6.25	13.25	423.5	431			
	50	-8.75	-8.75	-8.75	-7	-5.25			
	75	-9.5	-9.5	-9.5	-9.5	-9.5			
	100	-8.5	-8.5	-8.5	-8.5	-8.5			
	125	-7.5	-7.5	-7.5	-7.5	-7.5			

Expected net value for higher degradation rate

Conclusions & future works

- * Longer monitoring intervals increase the risk of shorter life.
- * The optimal net value might be insensitive to the degradation level after repair.
- * Thresholds can play a decisive role.

Conclusions & future works

- * Important factors including: rate of degradation, accurate calculation of the cost associated with the degradation. reduction, and revenue calculation especially in the case of partial failure.
- * Relaxing the limiting assumptions; shocks and the duration of maintenance based on the required repair level.
- * Need for an appropriate optimization method.

THANK YOU

Western New England University 1215 Wilbraham Rd, Springfield, MA 01119, USA seyed.niknam@wne.edu

