Financial Management in Maintenance October 2016

Ben Stevens – Stevensb@kingston.net DataTrak Systems Inc

Today's Agenda

- 1. Financial KPI's and how to use them
- 2. Using Financial measures to Evaluate the success of your Project
- 3. Smarter Maintenance budgets
- 4. Using Risk to decide whether to PM or Run
- 5. Case Studies in Spare Parts

همایش بین المللی مدیرافنی و نگهاری و تعمیر

Basic Rules for Maintenance Investments

- 1. The returns from a project must be higher than the average return for the business
 - If average return for your business = 20%, then the project return must be > 20%
- 2. Internally, each department is in competition with other departments for the company's resources; so Maintenance must show a higher ROI.

ROI Calculation: Impact on Maintenance Costs of Reducing Breakdowns from 45% to 10%

Tactic:	Prevent	ive Maintenance %	Breakdown Maintenance %		
	Before	e After	Before	After	
% of Total	10%	45%	45%	10%	
Cost of Maintenance	40,000	160,000	500,000	120,000	
Cost of PM Program		220,000			
ROI = Cost Savings / Investment		(500,000+40,000) - (160,000+120,000 / 220,000 = 118%			

Note – excludes impact of Reduced Production

losses and Reputation losses

Case Study

Cost Reporting as the basis for Budgets

This should be your starting point for key equipments

Equipment	Labour	Materials	Contract	Tools	Tot	al \$	Comments
	\$	\$	\$	\$			
#5 Boiler							Another breakdown last
- Repair	15,250	12,440	Nil	300	27	,990	month! Should be solved by
- PM's	3,240	4,500	nil	nil		,740	the major refurbishment
- Emergency	5,200	4,500	nil	Nil	9	700	
- Special	3,500	2,550	45,000	Nil	51	,050	
Total	27,190	23,990	45,000	300	96	5,480	
Hot Press							
Total		Add extra	a categori	es of	Add extra categories of		
		maintena	nce as ne	eded	resources as needed		

Example of Asset Centred Budget

	Actual This year							Budget Next Year	
Equipment	Lab \$	Mats \$	Contr \$	Tools \$	Total \$	Comments	Change %*	Total \$	
#5 Boiler - Repair - PM's - Emergency - Special Total Hot Press Total	15,250 3,240 5,200 3,500	12,440 4,500 4,500 2,550	Nil nil nil 45,000	300 nil Nil Nil	27,990 7,740 9,700 51,050 96,480	Completed a major refurb this year; will save on Reg Mtce \$ and Em \$ next year; need to boost PMs	-15% +10% -90% -100%	23,790 8,500 970 Nil 33,260	

• Rate increases: - Labour rate 3%

- Labour Tale 3%
- Materials and Commodities prices 4%
- Contractor rates 3%

Example – if the cost of Failure is \$1m and the Probability is 10%, then the risk is \$100,000

Our Business Decision:-

If the PM cost (\$975) is less than the Risk of Failure (\$3,550) should we do the PM or allow the equipment to keep running?

Cost of Failure

Cost of Failure = Cost of Emergency Repair + Cost of Lost Revenue + Penalty Costs, Reputation Costs, Fines and Reparations

Cost of PM

Cost of PM = Cost of PM Work + Cost of Lost Revenue + Penalty Costs, Reputation Costs, Fines and Reparations

Probability of Failure

Probability needs:

- 1. A specific period of time (usually until the end of the current operating cycle)
- 2. A percentage number (e.g. 25%) based on:
 - 1. Asset condition
 - 2. Failure history
 - 3. Usage in balance of the operating cycle
- 3. A statement of how confident are we that we are right (95% confidence levels)

Failure Cost Report

Asset	Repair Cost	No. of Failures	Failure Hours	Revenue Loss per hour	Total Revenue Loss	Pen- alty Cost	Total Failure Cost	Cost per Failure
#5 Boiler	2,400	4	16	500	8,000	18,000	28,400	7,100
Primary Pump	12,000	2	6	15,000	90,000	56,000	158,000	79,000

Preventive Cost Report

Asset/ System	PM Cost	No. of PM Actions	PM Hours	Revenue Loss per hour	Total Revenue Loss	Penalty Cost	Total Preventive Cost	Cost per PM
#5 Boiler	800	8	4	500	2,000	5,000	7,800	975
Primary Circulatio n Pump	1200	4	2	15,000	30,000	20,000	51,200	12,800

Risk in Maintenance: Risk Ratio Report

Asset	Cost per Failure \$	Failure Risk %	Failure Risk \$	Cost per PM \$	Risk Ratio (or Payback ratio)
#5 Boiler	7,100	50%	3,550	975	3550 : 975 = 3.6:1
Primary Circulate Pump 2	79,000	15%	11,850	12,800	11850 : 12800 = 0.9:1

- 1. Should we do the PM on the BOILER or let it run?
- 2. Should we do the PM on the PUMP or let it run?
- 3. If we let the PUMP run, how would you expect

the numbers to change next week?

Spare Parts Calculator

1. Cost of having no Spare Part

- a. Extra cost of repair due to expedited spare part or locally sourced
- b. Extended cost of outage due to the delay in getting the spare part = Extra outage hours x outage cost per hour
- c. Impact on reputation, market share etc due to the extended outage
- 2. Cost of having the Spare Part
 - a) Purchase price of the Spare Part
 - b) Cost of holding the Spare Part (space, admin etc)

Case Study

Spares Report

Equipment /System	Extra Repair Cost	Extra Outage Cost	Reputa- tion Cost	Total cost of Zero Spares	Prob of Failure needing Spare	Risk of no Spare	Cost of Holding Spare
Spare #1	5000	20,000	*A	25,000	50%	12,500	2,500
Spare #2	12,000	16,000	* A	28,000	20%	5,600	50,000

Notes:

- *A Factors to consider in Reputation Cost loss of market share, penalty for non-delivery of contract.....
- 2. For Spare #1 does it make sense to hold stock
- 3. What about Spare #2?

Spares and Equipment – Buy Cheap or Buy Quality?

- A continuing battle for Maintenance
- But.... If we cannot show that Quality is "better" then we deserve Cheap.
- Must show that the lifetime cost per unit for Quality is LOWER than for Cheap
- Example (for simplification, assume operating costs are the same)

Case Study				
Factor	Quality	Cheap		
Purchase Price	\$100, 000	\$50,000		
Life-time - years	10	5		
Failure Outages per year	1	3		
Time of Failure Outages- days	1.5	2		
Mtce Outages per year	3	4		
Time of Mtce Outages – days	1	1		
Output Units per day	100	100		
Lost output units due to Failures	10 x 1 x 1.5 x 100 = 1500	5 X 3 x 2 x 100 = 3000		
Lost output units due to Maintenance Outages	10 x 3 x 1 x 100 = 3000	5 x 4 X 1 x 100 = 2000		
Value per output unit	150	150		
Total Cost	150 x (1500+3000) + 100,000 = 775,000	150 x (3000 + 2000) + 50,000 = 800,000		
Total Cost per year	77,500	160,000		

Conclusions

- The biggest single change facing Maintenance in the next few years is the requirement for Maintenance Managers to be Maintenance <u>Business</u> Managers
- 2. We must therefore be ready:
 - A. To prove that Maintenance costs are an investment
 - B. And that we are responsible managers of that investment
 - C. To back this position with financial data and financial KPI's
 - D. To argue our case with facts and logic

Stevensb@kingston.net

DataTrak Systems Inc, 560 Burns Road, Godfrey, Ontario, Canada, K0H 1T0

